quinta-feira, 1 de junho de 2017

Alô, tem alguém ai?

Nelson Alberto Soares Travnik (*)
nelson-travnik@hotmail.com
Observatório Astronômico de Piracicaba Elias Salum

Há 50 anos, vibrações estelares captadas por um radiotelescópio seriam obras de ETs. Muitos acreditaram ser um código para estabelecer contato com os terráqueos.

Em julho de 1967, a irlandesa Susan Jocelyn Bell Burnell (1943 - ) detectava acidentalmente com o radiotelescópio da Universidade de Cambridge, Inglaterra, um sinal muito regular – pulsos de radiação que se sucediam a uma freqüência de um por segundo . Em parceria com seu orientador, o radioastrônomo inglês Antony Hewish (1924 - ) pensaram num primeiro instante tratar-se de um sinal emitido por uma forma de vida extraterrestre. 

Essa hipótese incendiou a mente de multidões: finalmente havíamos recebido sinais dos nossos irmãos do espaço! Os sinais foram atribuídos a “pequenos homens verdes” conhecidos pela sigla LGM (Little Green Men)  Uma outra hipótese entretanto, para explicar a regularidade precisa das emissões, era de que os sinais provinham de perturbações terrestres como o facho periódico de um farol que gira. Mas a regularidade dos pulsos demonstrou que se tratava de algo novo.

Não tardou muito para que Bell descobrisse que certos sinais pulsados de radio, chegavam com enorme precisão a cada 1,33728 segundos vindos da constelação de Vulpecula (Raposa). Outros sinais foram identificados por Hewish no centro da nebulosa do Caranguejo da constelação zodiacal do Touro. Identificado o objeto no coração da nebulosa, viu-se tratar de um novo tipo de estrela que recebeu o nome de pulsar, oriundo da contração de expressão inglesa “Pulsating Radio Sources” que equivale a ‘fonte de radio pulsante’. 

Coube a Thomas Gold (1920-2004) verificar que os pulsares eram estrelas de nêutrons em rotação. Identificados, eles emitem em todos os domínios dos comprimentos de onda das faixas de radio. A partir da descoberta, observações em outras faixas do espectro eletromagnético demonstrou que os pulsares podem ser observados não só em raios gama e raios X bem como em luz visível. Utilizando técnicas fotográficas ultrarrápidas, foi possível flagrar as pulsações do pulsar da nebulosa do Caranguejo. Desvendado o ‘mistério’ tornamos a ficar isolados no universo.   

O que são?

A existência de estrelas formadas basicamente de nêutrons, foi proposta em 1932 pelo físico russo Lev Davidovich Landau (1908-1968) pouco depois de se descobrir que essa partícula (juntamente com prótons e elétrons) formava o átomo. Esse modelo concebido pelo astrofísico Walter W. H. Baade (1893-1960) e pelo astrônomo suíço Fritz Zwicky (1898-1974), foi confirmado com a observação da supernova de Shelton SN 1987, em 1987, na Grande Nuvem de Magalhães, uma galáxia satélite da nossa galáxia. Sua massa inicial estava compreendida entre 8 e 20 massas solares. 

Estrelas de nêutrons é, pois, a explosão final de uma estrela solitária de grande massa. Quando no momento da explosão, ela brilha com luminosidade de uma galáxia inteira! São objetos extremamente compactos e sua compacidade pode ser entendida pela densidade que é definida pela massa de um dado volume. A água por exemplo, tem densidade de um grama por centímetro cúbico. A densidade do ouro é 19 vezes maior. Qual seria a densidade em uma estrela de nêutrons? 

Praticamente inimaginável. Elas tem densidade de 100 milhões de toneladas por centímetro cúbico (densidade do núcleo atômico)! No espaço de uma colherzinha de chá por exemplo, seria algo de milhões de toneladas! Com exceção dos buracos negros, é a maior compacidade conhecida. Isso pode ser entendido para uma estrela centenas ou milhares de vezes maiores que o Sol e que, após a explosão, converte-se a uma esfera de 20 km de diâmetro. 

E como explicar a vertiginosa rotação da estrela? É o que em física é conhecido como conservação de momento angular. Vejamos: uma estrela comum tem velocidade de rotação de algumas dezenas de quilômetros por segundo. A rotação das estrelas de nêutrons é algo inimaginável – a cada pulso observado ela completa uma volta e essa volta se dá a centenas de pulsos por segundo! A rotação mais rápida observada  emite 716 pulsos por segundo o que significa que ele gira mais de 700 vezes por segundo em torno do seu próprio eixo! Mais tarde os astrônomos constataram que a maioria das estrelas de nêutrons não são pulsares pois sua emissão de radio já terminou há muito tempo, pois sua vida média é de só 10 milhões de anos a não ser que seja uma binária (duas estrelas submetidas aos mesmos laços de gravitação). A estrela de nêutron, um pulsar, é pois a resultante de uma estrela massiva que ao explodir se transforma em uma bela e grandiosa nebulosa, contendo gases, poeira e outros elementos que irão contribuir para a formação de novas estrelas e com isto sistemas planetários similares ao nosso. Nascimento, vida, morte e renascimento. Eis a tônica que prevalece no Cosmo. 

(*) Nelson Travnik é astrônomo e Membro Titular da Sociedade Astronômica da França.  

Nenhum comentário:

Postar um comentário